The Impact of Roller Pump-Assisted Cardiotomy Suction Unit on Hemolysis

Artif Organs. 2020 Jul 3. Online ahead of print

Ex‐vivo generation of large negative pressures by STO events is the main cause of cardiotomy suction‐associated hemolysis. The clinical relevance of this mechanism needs further investigations.

AddThis Sharing Buttons

Hemolysis in cardiac surgery is often related to the contact of blood with air or artificial surfaces. Variations of negative pressure in the suction cannulas may represent an additional factor. Limited data exist on the contribution of a roller pump‐assisted (RPA) cardiotomy suction unit to hemolysis.

Elevation of free hemoglobin (fHb) following air suction (AS) or suction tip occlusion (STO) events of a pump‐assisted cardiotomy suction unit was investigated in a mock circuit filled with blood from slaughtered domestic pigs. AS‐associated hemolysis was measured over 240 minutes with 2 minutes of AS occurring every 10 minutes. STO‐associated hemolysis was analyzed over 80‐minute periods: configuration 1 (c1) comprised a cycle of 20 minutes (min) occlusion and 60 min RPA flow (20/60 min); c2 comprised 20 cycles of 1/3 min; c3 comprised 40 cycles of 0.5/1.5 min; and c4 comprised 80 cycles of 0.25/0.75 min. The AS setup did not lead to significant hemolysis after 2 (p=0.97), 3 (p=0.40) or 4 (p=0.11) hours. The STO setup showed the greatest hemolysis (ΔfHb of 30 mg/dL) in c1 after 20 min. ΔfHb was different in c1 from all other configurations at 20 min (p<0.0001) and 80 min (p<0.05).

Ex‐vivo generation of large negative pressures by STO events is the main cause of cardiotomy suction‐associated hemolysis. The clinical relevance of this mechanism needs further investigations.