World's Largest Resource for Cardiovascular Perfusion

Perfusion NewswireBiologics ZonePulmonary and Systemic Vascular Resistances After Cardiopulmonary Bypass: Role of Hemolysis

Pulmonary and Systemic Vascular Resistances After Cardiopulmonary Bypass: Role of Hemolysis

Objectives

Prolonged cardiopulmonary bypass (CPB) is associated with hemolysis, resulting in increased plasma oxyhemoglobin and vascular nitric oxide depletion. The authors hypothesized that hemolysis associated with CPB would reduce nitric oxide bioavailability, resulting in high pulmonary and systemic vascular resistances that after CPB would normalize gradually over time, due to clearance of plasma oxyhemoglobin. The authors also investigated whether prolonged CPB (≥140 min) produced increased levels of hemolysis and greater pulmonary and systemic vasoconstriction.

Design

Prospective cohort study.

Setting

Single-center university hospital.

Patients

The study comprised 50 patients undergoing elective cardiac surgery requiring CPB.

Interventions

Plasma hemoglobin and plasma nitric oxide consumption were measured before surgery and after CPB. Pulmonary and systemic hemodynamics were measured after CPB. The effects of short (<140 min) and prolonged (≥140 min) CPB on these parameters were considered.

Measurements and Main Results

Pulmonary and systemic vascular resistances and plasma hemoglobin and nitric oxide consumption were highest at 15 minutes after CPB and then decreased over time. Pulmonary and systemic vascular resistances and plasma hemoglobin and plasma nitric oxide consumption were higher in patients requiring prolonged CPB. The reduction in plasma nitric oxide consumption from 15 minutes to 4 hours after CPB was correlated independently with the reductions in pulmonary and systemic vascular resistances.

Conclusions

Prolonged CPB was associated with increased plasma hemoglobin and plasma nitric oxide consumption and pulmonary and systemic vascular resistances. The reduction in plasma nitric oxide consumption at 4 hours after CPB was an independent predictor of the concomitant reductions in pulmonary and systemic vascular resistances.


Leave a Reply

#1 largest online community of Perfusionists

Join Our Perfusion.com
Online Community

Get your swag kit by becoming a member or updating profile.
Swag will be sent to U.S. mailing addresses only.
©2024 Perfusion. All Rights Reserved. Privacy Policy | Your Privacy Choices