Impact of Cardiopulmonary Bypass on Neurogenesis and Cortical Maturation

Ann Neurol. 2021 Sep 29. Online ahead of print

Objective

Neurodevelopmental delays and frontal lobe cortical dysmaturation are widespread among children with congenital heart disease (CHD). The subventricular zone (SVZ) is the largest pool of neural stem/progenitor cells in the postnatal brain. Our aim is to determine the effects of cardiopulmonary bypass (CPB) on neurogenesis and cortical maturation in piglets whose SVZ development is similar to human infants.

Methods

Three-week-old piglets (n = 29) were randomly assigned to control (no surgery), mild-CPB (34°C full flow for 60 minutes) and severe-CPB groups (25°C circulatory-arrest for 60 minutes). The SVZ and frontal lobe were analyzed with immunohistochemistry 3 days and 4 weeks postoperatively. MRI of the frontal lobe was used to assess cortical development.

Results

SVZ neurogenic activity was reduced up to 4 weeks after both mild and severe CPB-induced insults. CPB also induced decreased migration of young neurons to the frontal lobe, demonstrating that CPB impairs postnatal neurogenesis. MRI 4 weeks after CPB displayed a decrease in gyrification index and cortical volume of the frontal lobe. Cortical fractional anisotropy was increased after severe CPB injury, indicating a prolonged deleterious impact of CPB on cortical maturation. Both CPB-induced insults displayed a significant change in densities of three major inhibitory neurons, suggesting excitatory-inhibitory imbalance in the frontal cortex. In addition, different CPB insults altered different subpopulations of inhibitory neurons.

Interpretation

Our results provide novel insights into cellular mechanisms contributing to CHD-induced neurological impairments. Further refinement of CPB hardware and techniques is necessary to improve long-term frontal cortical dysmaturation observed in children with CHD.